Linear codes with few weights over $\mathbb{F}_2+u\mathbb{F}_2$

نویسندگان

  • Minjia Shi
  • Liqin Qian
  • Patrick Sole
چکیده

In this paper, we construct an infinite family of five-weight codes from trace codes over the ring R = F2+uF2, where u 2 = 0. The trace codes have the algebraic structure of abelian codes. Their Lee weight is computed by using character sums. Combined with Pless power moments and Newton’s Identities, the weight distribution of the Gray image of trace codes was present. Their support structure is determined. An application to secret sharing schemes is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On cyclic DNA codes over $\mathbb{F}_2+u\mathbb{F}_2+u^2\mathbb{F}_2$

In the present paper we study the structure of cyclic DNA codes of even length over the ring F2 + uF2 + u 2 F2 where u 3 = 0. We investigate two presentations of cyclic codes of even length over F2 + uF2 + u 2 F2 satisfying the reverse constraint and the reverse-complement constraint.

متن کامل

On Quantum Codes Obtained From Cyclic Codes Over $\mathbb{F}_2+u\mathbb{F}_2+u^2\mathbb{F}_2$

The aim of this paper is to develop the theory for constructing DNA cyclic codes of odd length over R = Z4[u]/〈u 2 − 1〉. Firstly, we relate DNA pairs with a special 16 element of ring R. Cyclic codes of odd length over R satisfy the reverse constraint and the reverse-complement constraint are discussed in this paper. We also study the GC-content of these codes and their deletion distance. The p...

متن کامل

The MacWilliams identity for $m$-spotty weight enumerator over $\mathbb{F}_2+u\mathbb{F}_2+\cdots+u^{m-1}\mathbb{F}_2$

Past few years have seen an extensive use of RAM chips with wide I/O data (e.g. 16, 32, 64 bits) in computer memory systems. These chips are highly vulnerable to a special type of byte error, called an m-spotty byte error, which can be effectively detected or corrected using byte error-control codes. The MacWilliams identity provides the relationship between the weight distribution of a code an...

متن کامل

Self-Dual Codes over $\mathbb{Z}_2\times (\mathbb{Z}_2+u\mathbb{Z}_2)$

In this paper, we study self-dual codes over Z2× (Z2+uZ2), where u 2 = 0. Three types of self-dual codes are defined. For each type, the possible values α, β such that there exists a code C ⊆ Z2×(Z2+uZ2) β are established. We also present several approaches to construct self-dual codes over Z2 × (Z2 + uZ2). Moreover, the structure of two-weight self-dual codes is completely obtained for α · β 6...

متن کامل

One-Lee weight and two-Lee weight $\mathbb{Z}_2\mathbb{Z}_2[u]$-additive codes

In this paper, we study one-Lee weight and two-Lee weight codes over Z2Z2[u], where u = 0. Some properties of one-Lee weight Z2Z2[u]-additive codes are given, and a complete classification of one-Lee weight Z2Z2[u]-additive formally self-dual codes is obtained. The structure of two-Lee weight projective Z2Z2[u] codes are determined. Some optimal binary linear codes are obtained directly from on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018